貝葉斯主義投資高手的方法,我總結(jié)為三類(lèi)
2023-07-10 06:31:12    騰訊網(wǎng)

投資分析的盡頭是貝葉斯概率


(相關(guān)資料圖)

1/6

同一件事的多個(gè)概率

你研究了一家公司的財(cái)報(bào),覺(jué)得數(shù)據(jù)很不錯(cuò),行業(yè)空間也很大,有產(chǎn)業(yè)政策扶持,投資邏輯也非常順,你考慮買(mǎi)入;?

但你在調(diào)研中認(rèn)識(shí)了一個(gè)公司離職人員,了解到公司管理混亂,領(lǐng)導(dǎo)人缺乏進(jìn)取心,在這個(gè)競(jìng)爭(zhēng)非常激烈的行業(yè),你聯(lián)想到公司的競(jìng)爭(zhēng)地位實(shí)際上是在慢慢下降的,于是你猶豫了;?

然后你走訪(fǎng)了經(jīng)銷(xiāo)商,發(fā)現(xiàn)公司對(duì)渠道的控制力很強(qiáng),而經(jīng)銷(xiāo)商的反饋也表明,消費(fèi)者很有粘性,近期的動(dòng)銷(xiāo)繼續(xù)保持強(qiáng)勢(shì)。

你又跟同行討論了一番,得到的信息更混亂了……

以上的情況是投資中的常態(tài),從不同角度得到不同的分析結(jié)果,對(duì)應(yīng)著不同獲勝概率。

但操作上只有“買(mǎi)、不買(mǎi)”兩種選擇,如果買(mǎi)了,結(jié)果只有“達(dá)到盈利預(yù)期”和“沒(méi)達(dá)到盈利預(yù)期”這兩種中的一個(gè),為什么一件事會(huì)有不同的概率呢?

這取決于你如何理解“概率”。

有人認(rèn)為,沒(méi)有什么概率,投資的結(jié)果不是賺就是虧,不是0就是100%;也有人認(rèn)為,投資中有概率但算不出來(lái),等于沒(méi)有概率。

關(guān)于概率,有兩種解釋?zhuān)肮诺浣忉尅卑迅怕士闯墒且粋€(gè)客觀(guān)的獨(dú)立數(shù)值,比如:

已知口袋里有9個(gè)紅球和1個(gè)白球,讓你閉著眼睛摸出一個(gè)為紅球的概率是90%。

如果此時(shí),你看了一眼手上的球,扔掉,繼續(xù)閉眼再摸一個(gè),因?yàn)槲也恢滥銊偛琶降氖鞘裁辞?,所以我只能認(rèn)為,你摸到紅球的概率還是90%,但因?yàn)槟阒滥阕约簛G掉的是紅球,對(duì)于你而言,下一個(gè)仍然為紅球的概率就變成88.89%。

同一件事就這樣出現(xiàn)了兩個(gè)概率。

這就是概率的另一種解釋——貝葉斯概率,這是一個(gè)基于信念的、主觀(guān)的、可變的數(shù)值,隨著你了解的新信息而變化。

貝葉斯算法的角度看,概率不但可計(jì)算,而且可以隨著信息變化,而股價(jià)的變化取決于信息的邊際變化,那么概率的變化也可以引發(fā)股價(jià)的變化,即,可以用于投資決策。

看一個(gè)實(shí)際投資問(wèn)題:有一家大公司搞借殼上市,有A、B、C公司三個(gè)備選目標(biāo),你在研究了一番后覺(jué)得都差不多,于是選擇了A。

后來(lái),你找到了一個(gè)了解借殼內(nèi)情的人,告訴他你買(mǎi)了A,但他不愿意直接告訴你答案,只能告訴你,B公司是不可能的。

請(qǐng)問(wèn),這個(gè)信息對(duì)你有用嗎?換句話(huà)說(shuō),現(xiàn)在只剩下A和C兩家公司,你要不要把A換成C?

很多同學(xué)可能已經(jīng)看出來(lái)了,這就是“三門(mén)問(wèn)題”的變形。

2/6

三門(mén)問(wèn)題與貝葉斯算法

考慮到還有很多讀者不知道“三門(mén)問(wèn)題”,所以我簡(jiǎn)要地復(fù)述一下:

這是一個(gè)競(jìng)猜的電視節(jié)目,臺(tái)上有三扇關(guān)著的門(mén),其中兩扇門(mén)后是羊,一扇門(mén)后是車(chē),你可以選其中任何一扇,如果是車(chē),就歸你了。

于是,你隨機(jī)選了一扇(假設(shè)是A)。

按規(guī)則,主持人(知道哪扇門(mén)后面有車(chē))打開(kāi)了其中一扇門(mén)(假設(shè)是B),讓你看到這扇門(mén)背后是羊,并給你一個(gè)機(jī)會(huì),你可換一扇門(mén)(即從A換成C)。

你的選擇是“換”還是“不換”呢?

這個(gè)問(wèn)題的答案,直覺(jué)判斷“換”與“不換”的概率都是一樣的,但實(shí)際上,你應(yīng)該換,換了后得到車(chē)的概率更高。

三門(mén)問(wèn)題的標(biāo)準(zhǔn)解釋是這樣的:因?yàn)橛袃芍谎颍慌_(tái)車(chē),所以你一開(kāi)始選中羊的概率是2/3,選中車(chē)的概率是1/3。主持人打開(kāi)一扇門(mén)后,如果你換的話(huà),你之前選的是羊,必然會(huì)變成車(chē),之前選的是車(chē),必然變成了羊,概率就完全互換了。變成“2/3的概率選中車(chē),1/3的概率選中羊”。

如果文字還是不好理解,用圖會(huì)清楚一些:

還是想不通的人,可以用一副撲克牌模擬一下。

三門(mén)問(wèn)題的答案就是重組問(wèn)題的答案,你現(xiàn)在把倉(cāng)位從A移到C的話(huà),押中的概率就從33%上升到了67%。

很神奇吧,只要有一條有關(guān)的新消息,哪怕與A、C公司都無(wú)關(guān),也能改變你現(xiàn)在的概率。

我們?cè)侔焉厦娴臈l件改一改,那位知情人士又說(shuō),當(dāng)然,重組沒(méi)有結(jié)束前,任何事都有可能發(fā)生,B也沒(méi)有完全出局,只是可能性比較低。

根據(jù)我們前面分析的方法,把倉(cāng)位從A移到C的話(huà),并不會(huì)上升到66%,但因?yàn)锽的概率低于33%,換的結(jié)果仍然比不換好。

我們把上面的例子從“內(nèi)幕交易”擴(kuò)大到正常的投資決策場(chǎng)景。

一支股票,如果你不研究,買(mǎi)入后實(shí)現(xiàn)預(yù)期收益的概率就是50%。

隨著你研究的深入——不管基本面分析還是技術(shù)分析還是高手指點(diǎn),甚至你只是去研究了其他的公司,每掌握一個(gè)新信息,就相當(dāng)于有一個(gè)無(wú)所不知的主持人幫你關(guān)上一扇“門(mén)”,買(mǎi)入后實(shí)現(xiàn)預(yù)期收益的概率開(kāi)始改變,從50%向上或向下變化。

如果用計(jì)算機(jī)語(yǔ)言去描述一個(gè)投資高手研究決策的過(guò)程,必然是上面描述的那樣,這被稱(chēng)為“貝葉斯算法”。

貝葉斯算法是人工智能的基礎(chǔ),你問(wèn)ChatGPT一個(gè)問(wèn)題,它蹦出來(lái)的每一個(gè)字,都是貝葉斯算法計(jì)算的最大概率值對(duì)應(yīng)的字。當(dāng)你告訴它,剛才說(shuō)的不對(duì),補(bǔ)充了一個(gè)新的信息,它馬上就把這個(gè)新信息代入到剛才的結(jié)果中,產(chǎn)生出新的一串概率最高的文字結(jié)果——這回正是你要的答案。

看到這里,很多人就算理解了,也不知道為什么會(huì)變成這樣,它太違背直覺(jué)了。這也是概率的最大特點(diǎn)——它可以被計(jì)算,但是你很難感受。

所以,想要理解概率,最好的方法還是“算”——找一個(gè)生活中的例子,親手用貝葉斯公式算一算。

貝葉斯計(jì)算是有數(shù)字公式的(謝爾頓寫(xiě)在黑板的那個(gè)),為了不把大家嚇跑,我用一個(gè)圖形界面去展示,保證不出現(xiàn)任何中學(xué)以上的數(shù)字公式。

3/6

貝葉斯計(jì)算的圖形界面

一位顧客走進(jìn)商店,看了看貨架,向你詢(xún)問(wèn)了某商品的情況,請(qǐng)問(wèn):這個(gè)顧客最終買(mǎi)單的概率有多高?

對(duì)于一位銷(xiāo)售老手而言,這個(gè)問(wèn)題相當(dāng)于基本面高手看財(cái)報(bào),技術(shù)高手看圖,可以通過(guò)顧客的一舉一動(dòng),判斷客戶(hù)的成交概率,決定花多少時(shí)間去向客戶(hù)推銷(xiāo),選相應(yīng)的推銷(xiāo)重點(diǎn),并且決定給出多大的折扣把客戶(hù)拿下。

回答之前先要知道一個(gè)“先驗(yàn)概率”——銷(xiāo)售轉(zhuǎn)化率,即“成交客戶(hù)/所有進(jìn)來(lái)的人”,這是一個(gè)歷史經(jīng)驗(yàn)值,任何銷(xiāo)售員都應(yīng)該知道,假設(shè)這家店是20%。

下面這張圖把所有進(jìn)店的人分成兩部分,左邊為成交的20%部分,右邊為不成交的80%。

接下來(lái),我們需要在先驗(yàn)概率的基礎(chǔ)上,考慮一個(gè)新消息——“向你仔細(xì)詢(xún)問(wèn)了某商品的情況”。

這時(shí),我們需要知道關(guān)于這個(gè)新信息的兩個(gè)“條件概率”:成交客戶(hù)的詢(xún)問(wèn)率和未成交客戶(hù)的詢(xún)問(wèn)率——這也是歷史經(jīng)驗(yàn)值,即過(guò)去所有成交/不成交的客戶(hù)中,有過(guò)仔細(xì)詢(xún)問(wèn)行為客戶(hù)的各自占比,有經(jīng)驗(yàn)的銷(xiāo)售,內(nèi)心對(duì)這兩個(gè)概率也應(yīng)該有大致的估計(jì)。

先看成交客戶(hù)的詢(xún)問(wèn)率,即“仔細(xì)詢(xún)問(wèn)的成交客戶(hù)/所有成交客戶(hù)”,假設(shè)為50%,即把左半邊五五開(kāi),然后得到上面咨詢(xún)的成交客戶(hù),總占比20%*50%=10%;

再看未成交客戶(hù)的詢(xún)問(wèn)率,即“仔細(xì)詢(xún)問(wèn)的未成交客戶(hù)/所有未成交客戶(hù)”,假設(shè)為30%,把右半邊三七開(kāi),上面咨詢(xún)的未成交客戶(hù),總占比80%*30%=24%。

上圖的四個(gè)角分別代表了四種情況,我們今天遇到的是上半部分——咨詢(xún)客戶(hù),所以,首先把下半部分的情況去掉,只看上半部分。

我們現(xiàn)在要分析的是——仔細(xì)咨詢(xún)且成交的客戶(hù),占所有成交客戶(hù)的比重,很明顯,就是左上角占上半部分的比例:

結(jié)果,在咨詢(xún)客戶(hù)中,最終成交的概率為:10%/(10%+24%)=29.4%。

所以,一位走進(jìn)商場(chǎng)的客戶(hù),當(dāng)他開(kāi)口咨詢(xún)時(shí),他的成交概率就從20%上升至29.4%,有經(jīng)驗(yàn)的銷(xiāo)售員就應(yīng)該注意這條銷(xiāo)售線(xiàn)索。

用這個(gè)方法也可以繼續(xù)推算出,一個(gè)不詢(xún)問(wèn)的客戶(hù),成交概率會(huì)從20%下降到15.2%。

一個(gè)銷(xiāo)售老手的每一步都在收集信息,進(jìn)行概率判斷,所以有經(jīng)驗(yàn)的銷(xiāo)售員接下來(lái)不是干巴巴地介紹產(chǎn)品,而是進(jìn)一步詢(xún)問(wèn)客戶(hù)的需求,不同的需求分別對(duì)應(yīng)著不同的成交概率。

好了,我們又遇到了跟前面一樣的問(wèn)題,就算概率從20%上升到29%,我還是不知道自己該怎么辦?

4/6

直到有操作意義的概率

顧客在來(lái)之前就知道自己會(huì)不會(huì)買(mǎi)東西,假設(shè)這人今天一定要買(mǎi)到,實(shí)際成交概率就是100%。

但銷(xiāo)售員并不知道這一點(diǎn),他只知道,客戶(hù)最終只有買(mǎi)(100%)和不買(mǎi)(0%)這兩種可能。

29%只是第一步的結(jié)果,他還可以不斷尋找新的信息,通過(guò)“貝葉斯算法”改變概率,以接近實(shí)際目標(biāo)概率——到底是0%還是100%。

這正是貝葉斯概率相對(duì)古典概率的意義,一定要找到有操作意義的概率的信號(hào)。

于是,銷(xiāo)售員注意到,顧客又問(wèn)了另一個(gè)完全不相干的商品——不好,經(jīng)驗(yàn)告訴他,這種情況下的成交概率會(huì)下降,因?yàn)楹芏嗖怀尚馁I(mǎi)的客戶(hù)就喜歡東問(wèn)西問(wèn)。

但到底會(huì)下降多少呢?我們開(kāi)始第二次“貝葉斯計(jì)算”,再引入兩個(gè)條件概率,成交客戶(hù)中,問(wèn)過(guò)其他完全不相干商品的比例是30%,未成交客戶(hù)中,有40%。

以下是第二次貝葉斯計(jì)算的圖,需要說(shuō)明的是,現(xiàn)在的先驗(yàn)概率不再是之前的20%,而是上一次計(jì)算后的約29%:

這個(gè)結(jié)果表明,當(dāng)顧客問(wèn)了另一個(gè)完全不相干的商品,他的成交概率從29%再次下降為8.7%/(8.7%+28.4%)=23%

還好,問(wèn)完后,客戶(hù)直接開(kāi)始談價(jià)格,很好,根據(jù)談價(jià)格的行為的“第三次貝葉斯公式”,最終成交概率猛得上升到70%……

70%!等的就是你,銷(xiāo)售員也就不藏著掖著了,直接拿出大殺器——折扣,順利將客戶(hù)拿下,成交概率最終定格在100%。

在這個(gè)過(guò)程中,雖然一開(kāi)始你只有一個(gè)與實(shí)際結(jié)果相差很大的先驗(yàn)概率,但通過(guò)掌握更多的信息,這個(gè)概率會(huì)越來(lái)越接近實(shí)際情況——0或100%,到了一定數(shù)值,你就可以作出應(yīng)對(duì)。

很多人肯定想問(wèn),我怎么才能知道這些條件概率呢?答案就是兩個(gè)字——先試。

這些都是在以往大量的銷(xiāo)售實(shí)踐中,漸漸總結(jié)出來(lái)的,并且始終不斷更新,比如今天的這個(gè)中年男人,假設(shè)在85%的成交概率下,最后竟然沒(méi)有買(mǎi),這個(gè)經(jīng)驗(yàn)就會(huì)改變銷(xiāo)售人員的那些先驗(yàn)概率和后面的一系列條件概率。

所謂“經(jīng)驗(yàn)”,就是你在某個(gè)專(zhuān)業(yè)方向,掌握了先驗(yàn)概率和大量條件概率。

到了這里,我們就可以用“貝葉斯算法”回答開(kāi)頭的投資機(jī)會(huì)分析的問(wèn)題了。

5/6

投資中的概率

每個(gè)人都有自己最擅長(zhǎng)的研究方法,用此方法選出的股票,在一定時(shí)間內(nèi)(比如1年)符合預(yù)期收益率的概率,可以作為一個(gè)“先驗(yàn)概率”。

這個(gè)概率都不會(huì)太高,比如一般不可能超過(guò)60%(除非是特別長(zhǎng)線(xiàn)的方法,或者符合要求的標(biāo)的特別少的方法),否則,你只需要這一個(gè)指標(biāo),選20個(gè)股,就可以年年獲得超額收益了。

如果你之前用此方法的戰(zhàn)績(jī)不錯(cuò),那就可假定為55%。

接下來(lái)可以代入條件概率:在所有能/不能達(dá)到你的預(yù)期收益的公司中,管理不好的概率分別為多少。

事實(shí)上,這兩個(gè)條件概率并不會(huì)相差太大——這個(gè)條件概率差異,稱(chēng)之為“區(qū)分度”,因?yàn)槟愕目紤]時(shí)間是一年,這么短的時(shí)間,管理因素幾乎可以忽略不計(jì)。而且,對(duì)于離職人員評(píng)價(jià)公司“管理混亂”的概率其實(shí)是非常高的,否則,離職的原因總不能是“自己能力不高吧”?

我們假設(shè)在所有能/不能達(dá)到你的預(yù)期收益的公司中 ,離職人員認(rèn)為管理好的概率分別為20%/25%。

第二次貝葉斯計(jì)算后的結(jié)果為53%。

由于管理因素在一年期的投資中區(qū)分度不夠,概率只是微微下降,仍然在50%以上。

投資者特別容易因個(gè)人好惡,用某個(gè)因素對(duì)標(biāo)的進(jìn)行“一票否決”,實(shí)際上區(qū)分度并沒(méi)有這么大,沒(méi)有貝葉斯概率,也就談不上理性投資。

接下來(lái)的條件,“動(dòng)銷(xiāo)好”對(duì)一年期的投資結(jié)果影響的區(qū)分度就大多了,在符合/不符合預(yù)期的標(biāo)的中分別為50%和30%。

區(qū)分度越大,這個(gè)條件的影響越大,在加入“動(dòng)銷(xiāo)好”這個(gè)條件后,投資收益符合預(yù)期的概率就上升到65%。

接下來(lái),每發(fā)現(xiàn)新的信息,你都可以用貝葉斯算法,更新“符合預(yù)期收益”的概率。

投資高手會(huì)設(shè)定一個(gè)買(mǎi)入的概率,比如70%,一旦新的條件使概率上升到70%,就可以買(mǎi)入,后續(xù)再根據(jù)新的信息統(tǒng)計(jì)分析概率,繼續(xù)上升到某一個(gè)水平比如80% ,則繼續(xù)加倉(cāng),如果下降到某一個(gè)概率,比如低于55%,就結(jié)束投資。

6/6

三類(lèi)貝葉斯主義的投資高手

總結(jié)一下上面的方法:

第一、投資機(jī)會(huì)的判斷=判斷達(dá)到預(yù)期收益率的概率

第二、隨著新信息的出現(xiàn),這個(gè)概率也在不斷變化

第三、隨著概率的變化,也要進(jìn)行相應(yīng)的操作

常常有人在后臺(tái)留言說(shuō),剛大,我找到一個(gè)堪比蘋(píng)果之于巴菲特的公司,你看看怎么樣?

非常遺憾,蘋(píng)果的成功不是巴菲特一開(kāi)始就算出來(lái)的,而是一年年符合預(yù)期而“剩者為王”的,一個(gè)蘋(píng)果背后就有99家公司不符合巴菲特繼續(xù)持有的要求,因?yàn)樾滦畔⒊霈F(xiàn)導(dǎo)致后驗(yàn)概率下降。

投資是一場(chǎng)長(zhǎng)跑,貝葉斯概率就是你的導(dǎo)航。

從貝葉斯概率的角度看,所謂高手有三種:

第一種是貝葉斯計(jì)算能力超強(qiáng)的高手。

最典型的是量化程序,人干不過(guò)機(jī)器的地方在于:機(jī)器用固定的算法每時(shí)每刻在全部標(biāo)的中搜索符合要求的投資機(jī)會(huì),而人是憑感覺(jué)和經(jīng)驗(yàn)在有限的幾個(gè)標(biāo)的中,思考大致符合要求的投資機(jī)會(huì),有時(shí)還考慮用什么樣的投資方法。

所以真正的投資高手,可能你問(wèn)他什么是“貝葉斯計(jì)算”,他一臉懵逼,那是因?yàn)樗沿惾~斯計(jì)算完全內(nèi)化了。

比如巴菲特曾說(shuō):“用虧損的概率乘以可能虧損的金額,再用盈利的概率乘以可能盈利的金額,最后用盈利的結(jié)果減去虧損的,這就是我們一直試圖做的辦法?!薄@就是計(jì)算預(yù)期收益率。

第二類(lèi)是擅長(zhǎng)挖掘有區(qū)分度的信息的高手。

通過(guò)前面的例子,可以看出,大部分新信息的區(qū)分度都很有限,你覺(jué)得有用的信息,可能在那些不好的股票上也同樣有用,并不足以讓最終概率大幅提升。

所以最常見(jiàn)的高手都是在某一個(gè)大眾缺乏認(rèn)知的地方,掌握了一些少有人掌握的“條件概率”,比如專(zhuān)注于某一個(gè)行業(yè),洞察此行業(yè)一些特殊的規(guī)律與現(xiàn)象,以此比別人更早發(fā)掘勝率高的投資機(jī)會(huì)。

還有“一招鮮+快速交易+果斷止損”的短線(xiàn)高手,并不需要太高的勝率,只需要圖形好(先驗(yàn)概率)+擇時(shí)(稍高的勝率)

更厲害的是觀(guān)察市場(chǎng)風(fēng)格變化的高手。同一類(lèi)信息在不同時(shí)期,區(qū)分度也是不同的,比如2017-2020年,ROE指標(biāo)的區(qū)分度就非常好,但2021年以后就失效了,而分紅率指標(biāo),在2021年前沒(méi)有什么區(qū)分度,但21年以后,區(qū)分度大大增加。

此類(lèi)高手,擅長(zhǎng)洞察常見(jiàn)的指標(biāo)在不同時(shí)期區(qū)分度的變化,以及背后的宏觀(guān)因素,及時(shí)加大最有效的因子,改變自己的選股風(fēng)格,以適應(yīng)不同的市場(chǎng)。

第三類(lèi)高手擁有更高的“先驗(yàn)概率”。

大部分人在選股階段的“先驗(yàn)概率”都差不多,靠的是后續(xù)找到有區(qū)分度的新信息,而第三類(lèi)傳說(shuō)中的高手,在選股階段就有更高的“先驗(yàn)概率”,之后只要用“淘汰指標(biāo)”篩選掉不符合要求的標(biāo)的就行了。

最典型的是一些有核心資源圈信息優(yōu)勢(shì)的大佬,還有那些有能力主動(dòng)引導(dǎo)題材與市場(chǎng)情緒的大資金,只需要“先驗(yàn)概率”就能立于不敗之地。

這類(lèi)高手中還有一種天賦異稟、耐心超群的人,有一套極高的“先驗(yàn)概率信號(hào)”,但符合要求的情況極少,大部分情況下都在耐心等候,一旦信號(hào)出現(xiàn),立刻加杠桿干。

****

很多人都會(huì)告訴你,投資要做大概率正確的事,比如買(mǎi)白馬。

但這種古典概率的思想,在投資中的結(jié)果往往是“四庫(kù)全輸”,因?yàn)?strong>人的行為會(huì)改變概率,人人都說(shuō)白馬好,白馬就會(huì)被抬高到毫無(wú)賠率的價(jià)格,人人避之不及的小概率事件,往往會(huì)出現(xiàn)賠率極高的機(jī)會(huì)。

古典概率所設(shè)想的那些先驗(yàn)的、穩(wěn)定的、可知的大概率事件,注定不會(huì)出現(xiàn),真實(shí)投資中的概率因人而異,而且常常因?yàn)轭D悟而造成概率突變。

然而古典概率是如此的符合人的直覺(jué),投資者總是出現(xiàn)“正在做大概率正確的事”的幻覺(jué)。如果大家對(duì)貝葉斯概率感興趣,我會(huì)繼續(xù)這個(gè)系列的第二篇。

關(guān)鍵詞: